We are the combination of four hospitals: the General Hospital, the Children’s Hospital, the Women’s Hospital and the Traumatology, Rehabilitation and Burns Hospital. We are part of the Vall d’Hebron Barcelona Hospital Campus: a world-leading health park where healthcare plays a crucial role.
Patients are the centre and the core of our system. We are professionals committed to quality care and our organizational structure breaks down the traditional boundaries between departments and professional groups, with an exclusive model of knowledge areas.
Would you like to know what your stay at Vall d'Hebron will be like? Here you will find all the information.
The commitment of Vall d'Hebron University Hospital to innovation allows us to be at the forefront of medicine, providing first class care adapted to the changing needs of each patient.
Speaker: Dr. Dominik Paquet, Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Brain research heavily depends on models recapitulating key aspects of human brain physiology and disease pathology. Human iPSCs have great potential to complement existing rodent disease models, as they allow directly studying affected human cell types. In addition, recent developments in CRISPR genome editing revolutionized how impacts of genetic alterations on disease formation can be investigated. Co-culture of disease-relevant iPSC-derived cells with disease-relevant mutations enables studying complex phenotypes involving cellular crosstalk. By combining iPSC-, CRISPR- and tissue engineering technologies, we established new brain tissue models for AD and FTD using iPSC-derived cortical neurons, astrocytes, and microglia, as well as a microfluidic model of the blood-brain-barrier (BBB) based on co-culture of endothelial cells, mural cells, and astrocytes. Our technology provides highly controllable and reproducible 3-dimensional tissues with typical cell morphologies and functional features. The brain tissue model displays widespread synapse formation, spontaneous and induced electrical activity, network formation, microglial ramification, tiling, and phagocytosis. It can be long-term cultured in a postmitotic state without proliferation or cell death, thus providing a more controllable, reproducible, and long-lived alternative to cortical organoids currently used for 3D disease modelling. Our fully iPSC-based BBB model forms barrier-containing and perfusable vessels with typical morphologies of all cell types, including formation of astrocytic end feet on the vessels. Register here to attend by Zoom: https://gencat.zoom.us/j/95402392896
The acceptance of these terms implies that you give your consent to the processing of your personal data for the provision of the services you request through this portal and, if applicable, to carry out the necessary procedures with the administrations or public entities involved in the processing. You may exercise the mentioned rights by writing to web@vallhebron.cat, clearly indicating in the subject line “Exercise of LOPD rights”. Responsible entity: Vall d’Hebron University Hospital (Catalan Institute of Health). Purpose: Subscription to the Vall d’Hebron Barcelona Hospital Campus newsletter, where you will receive news, activities, and relevant information. Legal basis: Consent of the data subject. Data sharing: If applicable, with VHIR. No other data transfers are foreseen. No international transfer of personal data is foreseen. Rights: Access, rectification, deletion, and data portability, as well as restriction and objection to its processing. The user may revoke their consent at any time. Source: The data subject. Additional information: Additional information can be found at https://hospital.vallhebron.com/es/politica-de-proteccion-de-datos.